skip to main content


Search for: All records

Creators/Authors contains: "Ryan, Joseph V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Ensuring the long-term chemical durability of glasses is critical for nuclear waste immobilization operations. Durable glasses usually undergo qualification for disposal based on their response to standardized tests such as the product consistency test or the vapor hydration test (VHT). The VHT uses elevated temperature and water vapor to accelerate glass alteration and the formation of secondary phases. Understanding the relationship between glass composition and VHT response is of fundamental and practical interest. However, this relationship is complex, non-linear, and sometimes fairly variable, posing challenges in identifying the distinct effect of individual oxides on VHT response. Here, we leverage a dataset comprising 654 Hanford low-activity waste (LAW) glasses across a wide compositional envelope and employ various machine learning techniques to explore this relationship. We find that Gaussian process regression (GPR), a nonparametric regression method, yields the highest predictive accuracy. By utilizing the trained model, we discern the influence of each oxide on the glasses’ VHT response. Moreover, we discuss the trade-off between underfitting and overfitting for extrapolating the material performance in the context of sparse and heterogeneous datasets.

     
    more » « less
  2. Abstract

    Machine learning (ML) regression methods are promising tools to develop models predicting the properties of materials by learning from existing databases. However, although ML models are usually good at interpolating data, they often do not offer reliable extrapolations and can violate the laws of physics. Here, to address the limitations of traditional ML, we introduce a “topology-informed ML” paradigm—wherein some features of the network topology (rather than traditional descriptors) are used as fingerprint for ML models—and apply this method to predict the forward (stage I) dissolution rate of a series of silicate glasses. We demonstrate that relying on a topological description of the atomic network (i) increases the accuracy of the predictions, (ii) enhances the simplicity and interpretability of the predictive models, (iii) reduces the need for large training sets, and (iv) improves the ability of the models to extrapolate predictions far from their training sets. As such, topology-informed ML can overcome the limitations facing traditional ML (e.g., accuracy vs. simplicity tradeoff) and offers a promising route to predict the properties of materials in a robust fashion.

     
    more » « less
  3. Abstract

    When exposed to water, silicate glasses and minerals can form a hydrated gel surface layer concurrent with a decrease in their dissolution kinetics—a phenomenon known as the “passivation effect.” However, the atomic-scale origin of such passivation remains debated. Here, based on reactive molecular dynamics simulations, we investigate the hydration of a series of modified borosilicate glasses with varying compositions. We show that, upon the aging of the gel, the passivation effect manifests itself as a drop in hydrogen mobility. Nevertheless, only select glass compositions are found to exhibit some passivation. Based on these results, we demonstrate that the passivation effect cannot be solely explained by the repolymerization of the hydrated gel upon aging. Rather, we establish that the propensity for passivation is intrinsically governed by the reorganization of the medium-range order structure of the gel upon aging and, specifically, the formation of small silicate rings that hinder water mobility.

     
    more » « less
  4. Abstract

    Radioactive waste immobilization is a means to limit the release of radionuclides from various waste streams into the environment over a timescale of hundreds to many thousands of years. Incorporation of radionuclide-containing wastes into borosilicate glass during vitrification is one potential route to accomplish such immobilization. To facilitate comparisons and assessments of reproducibility across experiments and laboratories, a six-component borosilicate glass (Si, B, Na, Al, Ca, Zr) known as the International Simple Glass (ISG) was developed by international consensus as a compromise between simplicity and similarity to waste glasses. Focusing on a single glass composition with a multi-pronged approach utilizing state-of-the-art, multi-scale experimental and theoretical tools provides a common database that can be used to assess relative importance of mechanisms and models. Here we present physical property data (both published and previously unpublished) on a single batch of ISG, which was cast into individual ingots that were distributed to the collaborators. Properties from the atomic scale to the macroscale, including composition and elemental impurities, phase purity, density, thermal properties, mechanical properties, optical and vibrational properties, and the results of molecular dynamics simulations are presented. In addition, information on the surface composition and morphology after polishing is included. Although the existing literature on the alteration of ISG is not extensively reviewed here, the results of well-controlled static alteration experiments are presented here as a point of reference for other performance investigations.

     
    more » « less